NUCLEAR SCIENCE AND ENGINEERING: 26, 378-384 (1966)

Stability Analysis of a Sampled-Data Controlled
Nuclear Reactor System

Frigyes Reisch
AB Atomenergi, Stockholm, Sweden
Received September 27, 1965

In a digital computer controlled system it is possible to monitor several
variables almost at the same time and control the system according to the most
critical one. This is called a sampled-data control system.

The purpose of the paper is to demonstrate how to handle such a problem. A
simplified reactor system including neutron kinetics and fuel and coeling medium
kinetics with a simple control circuit is examined. It is assumed that the reactor
has a great number of cooling channels, and it is necessary to check the exit
temperatures of the cooling medium as the maximum value is the limiting factor.
Sampling is performed to accomplish this. The temperatures are scanned and a
comparison is made between the value stored in the memory and the point being
measured, The higher of the two values remains in the one word memory, After
checking all the temperatures, a pulse representing the temperature of the hottest
channel is sent through the sampler to the regulator and the memory is cleared.

A suitable method to study the stability isthe z transform analysis. The proce-
dures and logic followed are outlined here. First, the system is defined in the
terms of Laplace transiormation. Then the solving of the sampled system problem
by the z transform theory is shown. A digital computer program is developed.
The results of several calculations show the importance of choosing the right

parameter combinations.

THE DESCRIPTION OF THE SYSTEM

The Sampled-Data Control

In this work it is assumed that the reactor has
a great number of cooling channels, and it is
necessary to check the exit temperatures of the
cooling medium as the maximum value is the
limiting factor.

Sampling is performed to accomplish this*.
The temperatures are scanned and a comparison
is made between the value stored in the memory
and the point being measured. The higher of the
two values remains in the one word memory which
is a zero-order hold device. After the checking
cycle, a pulse representing the exit temperature
in the hottest channel is sent through the sampler
to the regulator. Then the memory is cleared and

1J. T. TOU, Digital and Sampled-data Control Systems,
McGraw-Hill Book Company Inc., New York, Toronto,
London (1959).

the scanning procedure starts again. Thus, the
scanning frequency is equal to the sampling fre-
quency multiplied by the number of the coocling
channels., This memory method implies a variable
time delay or process lag. As many points are
sampled, one never knows when the highest tem-
perature is reached. To not lose any information
during the transients, the sampling frequency
must be more than twice as high as the highest
frequency of the continuous system.

The scanning equipment, the sampler, and the
regulator can be built together as a digital com-
puter, which provides the input signal to the
control rod mechanism. A perturbation reactivity
signal is supplied to the reactor control system
shown in Fig. 1 to illustrate how this feedback
controlled system will perform. For the sake
of simplicity, the control rods and regulator
(K) are assumed to work as an integrator. With
Laplace notations, one can write

K(s) =ky/s . (1)
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Fig. 1. The feedback controlled reactor system.

Here %, is the regulator constant. As the control
block is an integrator receiving pulses it works
as a zero-order hold device with stepwise outputs
until the deviation of the output signal from a
predetermined reference value is zero.

The Reactoyr

The purpose of this paper is to demonstrate the
procedures and logic used when studying the
stability problem of a sampled-data controlled
reactor system with the z transform theory, Itis
not intended to present a particular solution;
therefore, the internal dynamics of the reactor
are simplified.

Reactivity perturbation (p,) and control rod
reactivity (p,) are the input signals, and the exit
temperatures of the cooling medium in the differ-
ent channels (6.) are the output signals.

The reactor representation includes neutron
kinetics (N), fuel kinetics (F), an internal feedback
caused by the Doppler effect in the fuel (@), and
the kinetics of the cooling medium (D). Figure 2
shows the relationship between the blocks cre-
ating the reactor.

The transfer function of the reactor with the
usual Laplace transform notations (s) has the
. following form®

Oc (s) _ N(s) F(s) D(s)
p,(s) " 1+aN(s) F(s)

Neutron Kinetics

G(s) = (2)

After linearizing the usual neutron kinetics
equations, the following formula is obtained if only
one delayed-neutron group is considered

n(s)/no my
p (s) s

1+nzs
1+nss

(3)

3. M. HARRER, Nuclear Reactor Control Engineering,
D. Van Nostrand Company, Inc., Princeton, New Jersey,
Toronto, London, New York (1963).
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Fig. 2. Reactor dynamics components.

Here,
n=1/(0 + B/A), mnz= 1N, ns= /(X +B/1), (4)

where 1/A is the mean lifetime of the delayed-
neutron group and § is the fraction of delayed
neutrons, { is the lifetime of the neutrons; n(s)/ne
and p(s) are the relative changes of the nuclear
power and the reactivity during transients, re-
spectively.

Fuel and Cooling Medium Kinetics

It will be assumed that both the fuel and the
cooling medium kinetics can be described by a
simple time lag

OF (s) fi

F(s) = n(s)/no = 1+ fzs (5)
~ B¢ (s) ~ d

DO =5y = Tvdas - ©)

where 6r(s), f2, f1,and 6c(s), dz, d1 are the tran-
sient temperature variation, the time constant,
and the proportionality factor of the fuel and the
cooling medium, respectively.

The Complete Plant

The complete plant is represented in Fig. 3.
To make the mathematical reasoning easier, the
block diagram can be condensed to include only
the reactor block (G), the control block (K), and
the sampler with sampling time 7. See Fig, 4.

The functioning of the continuous system can be
described by considering a temperature from one
cooling channel.

The transfer function of the continuous plant
(P) is the following
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Fig. 3. Block diagram of the digital computer con-
trolled simplified reactor system.
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Fig. 4. The condensed block diagram of the sam-
pled-data controlled system.

fc(s) G(s)
pp(s) 1+ G(s) K(s) @

P(s) =

The denominator of P(s) can be recognized as a
typical characteristic equation. For a stable
plant, the real part of all the roots of the charac-
teristic equation must be negative, i.e., situated
left from the imaginary axes in the complex s
plane.

The weighting function or impulse response
w(f) of the continuous system in the time domain
can be obtained by the inverse Laplace transfor-
mation '

w(t) = L™ [P(s)] . (8)
The Irequency response can be obtained by the
substitution
s—jw . (9)
Thus, the frequency response of the continuous
system is
: G(jv
P = : ;
U =13 G(jw) K(jo)
The next step in the analysis should be the
checking of the stability of the sampled-data

(10)
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controlled system. By z transformation, one can
observe the system stability. One can also calcu-
late, for example, a step response in the time
domain by inverse z transformation., Before con-
sidering the application of the z transformation on
this particular problem, some of the basic princi-
ples of the z transform theory will be reviewed.

SOME BASIC PROPERTIES OF THE
z TRANSFORM THEORY

Consider a sampler as represented by Fig. 5.
The input signal x(¢) is continuous while the output
is pulsed. The pulsed or sampled value of x(¢) is
x*(1); x*(f) is a noncontinuous function appearing
as a pulse at time ¢ = 7, 27, . ... Mathemati-
cally, x*(#) can be described with Dirac’s delta
function 6(f)

x*(t) = x(f) 5_ 6(t - nT) (11)

The Laplace transform of the pulsed signal is
x*(s). Using the usual Laplace transform theory,
x*(s) can be calculated

x*(s) = L [x*®)] = gox(nT)exp(-nTs) (12)

Equation (12) indicates that x*(s) is an infinite

series in e’s ; therefore, use is made of the
substitution
In z
$="7 (13)
The z transform of x*(f)is thus
x(z) = z [x*()] = Llx*@®)], , (14)

where s = (1/7) Inz.

There are extensive tables for z transforms
containing functions commonly occurring in dy-
namic analysis.

x () . /T o 1% ({)
x (8 x* ()
S|
T
Fig. 5. The input and output signals of a sampler

with sampling time T,
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The use of the z transform is somewhat similar
to the Laplace transform. See Fig, 6. Suppose
that the system P(s) has the sample-data input
signal x*(s) and its continuous output signal is
y(s). I we sample y(s) we get v*(s),i.e., the
y values at the sampling times. These y values
can be represented by the z transform theory

y(z) = x(z) P(z) . (15)

The z transform theory is valid only when the
samplings frequency

F=1/T

is at least twice as high as the highest frequency
occurring in the frequency characteristic of the
continuous system P(jw).

(16)

x (s) ,‘x_*(i)_ P(s) I v (s) .
|
L),

x (z2) | Pla)}—e v (2) =x (2) P (2)

Fig. 6. A basic sampled-data system represented
by z transform technique.

Sone Stability Consideralions

The z transformation is a nonlinear procedure.
This means that to judge the stability of a system
it is not enough to study only the plant P(z) but the
perturbation p, must be taken in account too. The
z transform of the output signal 2.(z) depends on
where the sampler is placed in the feedback loop.
In this case, it is placed in the feedback path
before the control block as it is shown in Fig, 4.
The equation that should be used is

B Gpp(Z)
0c@) = TT6RE)
Where Gpp(z) and GK(z) are the z transforms of
the respective Laplace functions
Gpy(2) =z [G(s)p,(s)], GK(z2)=z [G(s)K(s)] . (18)

The characteristic equation in the z domain is the
denominator of #.(z)

1 +GK (z) =0.

(17)

(19)

For a stable sampled-data controlled system, the
roots of the characteristic equation must be inside
the unit circle in the complex z plane.

For a stable system, the ouiput is oscillatory
with diminishing amplitudes if there are conjugate

complex roots or real roots in the left half of the
unit circle. If all the roots are on the positive
real axis in the unit circle the response decays
without oscillations.

The Tvansient Response in the Time Domain

Inverse z transformation may be carried out
from the real inversion integral by partial-frac-
tion expansion or by power-series expansion.

The third method, sometimes called long divi-
sion, will be used in this particular case. Suppose
that the z transform of the output signal can be
written in the following manner

0 1 2
ZVU,+Z UV, 2 VT ... FETY,
BC(Z) = 1 2 m
Zw +tzw tzwt oL+ 2T,
0 -1
= ZCogtz €1 t ...
n=m. (20)

The 6. values in the time domain at the sampling
instances are coq, €1, .. .. This means that evenif
the 6. (f) function is continuous one can calculate
the output signal only at /= T, 2T, .. .,

To determine the complete transient response
of a sampled-data system, modified z transform
and modified inverse z transform technique have
to be used, but these theories will not be discussed
in this paper.

STABILITY ANALYSIS OF THE SAMPLED DATA
CONTROLLED REACTOR SYSTEM WITH THE
z TRANSFORM TECHNIQUE

All the principal equations necessary for the
stability analysis of this system have been given.
Following is a description of the particular prob-
lem.

The first aim is to find the z transform of the
output signal ¢.(z) by using Eq. (17). Put the
actual equations of the neutron (N), fuel (F), and
cooling medium (D) kinetics in the reactor equa-
tion (G), i.e., combine Egs. (2), (3), (5), and (6).
The result’ will be a fraction with a first-degree
numerator and a fourth-degree denominator in
““s??. To make further calculations easier, sup-
pose that the denominator has only real roots.
They are -a., -az, -as, and -@s. To determine the
numerator of Eq. (17), the shape of the input signal
has to be selected. Consider a step reactivity
perturbation with a final value p,

Pp(s) = .Opj./s . (21)

*F. REISCH, ‘‘Stability Analysis of a Sampled-data Con-
trolled Reactor System,” AE-RTR-151, AB Atomenergi,
Stockholm, Sweden (1965).
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The numerator of Eq. (17) can now be written

mny f1d,

Gpple) = 2[Gl8) pp()] = Py = ==

a,a,a5a, (s +1/n,)
XZ[s(sml)(smz)(s+aa)(s+a4)]' a2

Replace p,, with %24, and the function GK(z)appear-
ing in the denominator of Eq. (17) will be similar
to Eq. (22).

To proceed, the z transformation indicated in
Eq. (22) has to be performed. The easiest wayis
to use a z transform table where it can be found.
This expression may be assumed to be equal to
the fraction H(z)/B(z)

a,8:a3a, (s +1/n,) _H(z) 93
s(s+a)(s+az)(s+as)s+as)] B(2) &)
_z/ne z Z_ . Z . _Z
T E-1 g PP et Z-py Yi-g,
(24)

The effect of the sampling time can be seen if one
realizes that

e1 = expl-aiT), ex = expl-a,T),

es = exp(-asT), and e; = expl-a,T) . (25)
The remaining constants are
__@203a4 (-a, + 1/712)
¥1= (az-an)(as- a)(as-ai)
Xa™ oo e X3 o0 e X4™ 40 (26)

By rearranging Eq. (24), H(z) and B(z) will have
the form of a power series

H(z) _ 25125+ z4fz4+ zah3+ 2%+ 2'h, + 2%,

B(z) 2%+ 2%b,+ 2%+ 2%, + 2" + 2%,

. (2m)

Here, the constants #;. .
functions of n,, x, . .
to be written here.

The combination of Egs. (17), (23), and (27)
leads to a closed expression for the output signal
in the form of a power series in z, which was the
original goal

. hpand b;...b,are the
.x,and a,...a, too lengthy

5 4 3 2 1 0
2V Y2 Vg T2V 2V, +2 0, +2 1,

b = (28)

5 3 2 1 0 .
2ows+zw +2w v 2w+ 2w +2°w,

Here, the constants ©s ...vo and ws . . . W, are
the functions of all the parameters. They are not
given here because of their length, but can be
derived from the previous formulas.
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As was previously stated, the roots of the
denominator of Eq. (28) must be inside the unit
circle for a stable system. The step response in
the time domain can be calculated by long divi-
sion.

Calculation with the Digital Computer Program

It is quite clear that to perform all the calcula-
tion by hand would be hopelessly time consuming.
Because of this, a digital computer program has
been developed. The program gives the frequency
functions of the reactor G(jw) and the plant P(ju).
The roots of the characteristic equation of 6.(z)
and the step response in the time domain are
calculated, too.

Numerical Examples®

Suppose the following parameters for the case
a):

neutron kinetics ¢ =1 msec, = 0.65%,

1/x = 77 msec
f1=15C/%, f.=5 sec,
@ = 3 pcm/deg C

d: = 0.3°C/deg C, d-
= 6 sec (including the
sensing device)

fuel
cooling medium
£1=1.0 pcm/sec deg C

1/T =
+ 50 pcm step

regulator constant

samplings frequency 10 counts/sec

perturbation reactivity

Case b) will have the same parameters except the
regulator constant k,= 0.01 pcm/sec deg C.

The continuous systems’ amplitude character-
istics from the frequency responses are drawn in
Fig, 7. As the sampling frequency is 10 counts/
sec, all the amplitudes belonging to the frequen-
cies higher than half of the samplings frequency
5 counts/sec were neglected. The justification is
that all these amplitudes are less than 1% of the
largest amplitude |P(jw) | max-

The next step is to study the characteristic
equation in the z plane, For case a) the roots are

No. 1 0.9923
No. 2 0.7914

No. 3 0.6451

No. 4 0.9964 + 0.0467 j
No. 5 0.9964 - 0.0467 j

2In these examples, reactivity is expressed in per-
cent mil (pem) where 1 pem =10"° A 2/k. In this case,
1 dollar =650 pcm,



and for case b)

No. 1
No. 2
No. 3
No. 4
No. 5

0.9989
0,7973
0.6478
0.9845
0.9932 .

SAMPLED-DATA CONTROLLED REACTOR

The roots for both cases are inside the unit
circle; therefore, the system is stable, See Fig. 8.
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Fig. 7. The frequency response of the system with-

out sampling.
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Fig. 8, The roots of the characteristic equations in
the z domain for systems with

case a) oscillatory diminishing response
case b) exponentially decaying response.
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In case a), the step response is oscillatory as
there are two complex conjugated roots. In case
b), all the roots are on the positive real axis
indicating an exponentially decaying step response
in the time domain,

The step responses in the time domain calcu-
lated by long division justify the predictions as
shown in Fig. 9.

deg C
A

case b)

case a)

Fig. 9. The time domain step response for systems
with oscillatory and exponential decay.
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0.0 : 4 t &= k)
0.001 0.01 0.1 1.0 %per mil
sec deg C

Fig. 10. Stability region for varying fuel temperature
coefficient (¢) and regulator constant (g). With two
different fuel time constants (f, =5 sec, f, = 10 sec).
Reactivity perturbation = +10 pem step,
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If some of the parameters are uncertain, it is
necessary to chart a stability diagram. Take the
previous case and suppose that the fuel tempera-
ture coefficient and time constant are known with
insufficient accuracy

1 pem/deg C S a < 3 pem/deg C

5sec 5 f: =10 sec.

The task is to choose a control constant %2,. The
expected step reactivity perturbation is + 10 pcm.

As a first step, it is sufficient to calculate the
roots of the characteristic equation with different
a and %2 values for f, =5 and 10 sec. From these
data one can draw a curve similar to those in
Fig. 10, The (e,k1) plane is divided by the curve
fa=constant. To the left of the curve, there are
the @,k values which give a stable system, e.g.,
Jf2=10 sec, @ = 1.5 pcm/deg C and % = 0.01 pem/
sec deg C. To the right of the curve, there are the
combinations which give unstable responses, e.g.,

fz= 10 sec, o = 1.0 pcm/deg C and k;= 0.1 pcm/
sec deg C,

It should be understood that, in the stable
region, the nearer the parameters are to the
stability limit the more oscillatory the system
becomes, but at the same time the temperature
error is more quickly corrected. As might be
expected, a faster fuel time constant (f.= 5 sec)
has a larger stability region. Before choosing a
final value for %, and determining the permissible
maximum and minimum values, it is necessary, of
course, to study the overshoots of the temperature
transients in the time domain. This can be
performed according to the procedure indicated in
the numerical examples previously given.
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