#### GE Hitachi Nuclear Energy

## PRISM

Lighting a new era for reactor safety, energy security, and used nuclear fuel management

David Powell Vice President Europe region







European Nuclear Conference 2012 Manchester 9 - 12<sup>th</sup> December 2012

### The Spent Nuclear Fuel Dilemma

# We cannot wish Britain's nuclear waste away

Opponents of nuclear power who shout down suggestions of how to use spent waste as fuel will not make the problem disappear

#### GEORGEMONBIOT'S BLOG

The Guardian, 2 February 2012



### Closing the nuclear fuel cycle Advanced Recycling Center



### "Spent fuel"- What are we dealing with?

- Current nuclear reactor fuel produces electricity for 4-6 years
- At discharge, only **~1%** of the potential energy has been harnessed
  - Most of the spent fuel is uranium
  - ~1% of the spent fuel is transuranics (long-lived isotopes)
  - ~4-5% are fission products (short-lived isotopes)
- PRISM uses the uranium and transuranics as fuel, leaving the shortlived isotopes for disposal



Chemistry

### **Electrochemistry flowsheet**





### GEH's oxide fuel processing flowsheet



### GEH's oxide fuel mass balance model





### Scale-up issues



### The waste forms

<u>Metallic</u> 99Tc is in the metal waste form

### <u>Ceramic</u> Cs and Sr are in the ceramic waste form







### **Advanced Recycling Center**



**Short-lived Waste** 

The NFRC produces PRISM fuel from the recycled uranium and long-lived isotopes. The short-lived isotopes are isolated into stable waste forms.



Reactor

### Sodium reactor historical evolution



All rights reserved machine received international - An rights reserved

### **PRISM origins**

✓ Advanced Conceptual Design

- Already paid for by USG
- Available today
- ✓ NRC "...no obvious impediments to licensing..."
  - Prudent starting point













- GE Funded
- Improved
  - economics
- Actinide
- burning scenarios
- Commercial
  Best practices
  Advanced power conversion cycle

2007-2009

GNE

• Demo reactor

Actinide burning

14

Copyright 2011 GE Hitachi Nuclear Energy International - All rights reserved

### PRISM is Power Reactor Innovative Small Module



•Modular nuclear reactor that uses nuclear waste as fuel

- •311 MWe (840 MWth) per reactor
  - Two reactors per turbinegenerator
  - 6 reactors/site -1866 MWe

•Fuel for PRISM fabricated on-site in NFRC

•Features advanced safety and digital control systems

•Modular components allow for factory fabrication



## GEH building and testing key pumping components





#### **Building the EMP**









ETEC Testing Copyright 2011 GE Hitachi Nuclear Energy International - All rights reserved



16

### **PRISM modular construction**





### Basic design features of reactor

#### **Simple Conservative Design**

- Passive decay heat removal
- Automated safety grade actions

#### Simplified O&M

- Safety grade envelope small
- Compact primary system



**Reduced Capital and Investment Risk** 

- Factory fabrication of certified design
- Modular construction and seismic isolation
- Small and simple system configuration



### **PRISM features allow for low** n<sup>th</sup>-of-a-kind cost of electricity

#### Feature

Pool Type Higher Op Temp -Fuel Consumption -Higher Power Density — Better efficiency Passive Safety Modular Design

#### Cost Advantage

- Eliminates LOCA
- Metallic Fuel Passive reactor shut down
  - Improved efficiency
    - Consumes transuranics

      - Eliminates active systems
    - Lower on-site construction costs



#### X CRBR X Moju X BN600 X ESFR 19





#### PRISM enables Advanced Recycling Center

Copyright 2011 GE Hitachi Nuclear Energy International - All rights reserved

### Transuranic disposal issues

The 1% transuranic (TRU) content of nuclear fuel is responsible for 99.9% of the disposal time requirement and policy issues



### Benefits to a repository

- Reduction of waste package heat load and volume increases repository capacity
- Dramatic reduction in long-lived constituents in waste packages simplifies repository design
- Dramatic reduction in long-term radiotoxicity of waste makes licensing repository easier and may allow elimination of costly drip shield

Cost of disposal is a function of: fixed cost, volume, and heat load. Policy determines the relative value.



### UK plutonium - Potential opportunity



#### MANAGEMENT OF THE UK'S PLUTONIUM STOCKS

A consultation on the long-term management of UK owned separated civil plutonium • The UK is storing the world's largest stockpile of civil Pu at 112t and growing.

- The UK Government has taken positive steps and announced its preferred policy of re-use in civil nuclear reactors.
- It "remains open to any alternative proposals for plutonium management that offer better value to the taxpayer"
- The solution needs to meet security and non-proliferation requirements and be affordable, deliverable and offer value for money.
- PRISM provides a unique opportunity.

### Innovation for fully closing the fuel cycle

- The **answer to the spent fuel dilemma** can reduce used nuclear fuel to ~300year radiotoxicity while providing new electricity generation
- Passive air-cooling capability with no operator or mechanical actions needed
- Simplified design prevents loss of coolant accident
- Based on over **30 years of safe operation** of EBR-II by the U.S. Government
- Could be designed and deployed in the near-future; could start the path toward licensing **today**



#### Advanced Recycling Center can reduce nuclear waste radiotoxicity from ~300,000 years to ~300 years

