DE LA RECHERCHE À L'INDUSTRIE

CHALLENGES RELATED TO MINOR ACTINIDE BEARING FUELS

Dominique WARIN

Atomic Energy and Alternative Energy Commission

European Nuclear Conference 2012 – Manchester, UK December 9-12, 2012

www.cea.fr

CHALLENGES FOR MINOR ACTINIDE BEARING FUEL

OUTLINE OF THE PRESENTATION

- The context for transmutation
- **■** The specifities of MA bearing fuels
- Knowledge from irradiation experiments
 - **Fast reactor : homogeneous transmutation mode**
 - Fast reactor : heterogeneous transmutation mode
 - Oxide / metal, carbide or nitride
- Fabrication of MA bearing fuels
- Modeling of MA bearing fuels
- Conclusion

FROM LWR RECYCLING TO FR RECYCLING

GENERATION IV SYSTEMS WASTES

Transmutation with GEN IV Fast Reactor systems will allow to avoid MAs in the waste repository: significantly lower radio-toxicity life time and lower footprint

MA PARTITIONING AND TRANSMUTATION

Innovative partitioning processes based on the design of new extractants

MA recovery processes have been successfully experimented, (kgs-scale, genuine spent fuel)

THE SPECIFICITIES OF MA BEARING FUELS

Transmutation fuel development is considerably more challenging than for conventional fuels:

Multiple elements in the fuel

U, Pu, Np, Am, Cm

Varying thermodynamic properties

e.g. High vapor pressure of Am

Impurities from separation process

e.g. High lanthanide carryover

- High burnup requirements
- High helium production during irradiation
- Remote fabrication & quality control
- Fuel must be qualified for a variable range of composition
 - Age and burnup of LWR SNF
 - Changes through multiple passes in FR
 - Variable conversion ratio for FR

THE SPECIFICITIES OF MA BEARING FUELS

- **■** Thermal, physics and chemistry properties of MA-UPuO₂ / UPuO₂ :
 - Melting temperature : lower
 - Thermal conductivity : lower
 - Volatility : higher
 - Oxygen potential : higher

- Thermal and radio toxicity conditions :
 - Thermal power : higher :

Pth MA target = \sim 10 x Pth LWR-MOX

- Neutron emissivity : higher : MA target = ~2000 x LWR-MOX
- High He production: alpha decay of 242Cm, coming from beta decay of 241Am
 - ⇒ MAs recycling has impacts on :
 - Fabrication, handling, transport, control,... conditions
 - In pile behavior

MA BEARING FUEL FOR HOMOGENEOUS RECYCLING: IN FR PILE BEHAVIOR

Am1 in JOYO :

- $U_{0.67}Pu_{0.29}Am_{0.02}Np_{0.02}O_{1.98}$
- $P_{LIN} = 416 \text{ to } 430 \text{ W/cm}$
- Irradiation: 10 minutes, and 24h

O/M 1.98

First test, 10 min

- •SiO₂-MOX precipitates (around the central hole)
- •Formation of spherical pores, moving to the center

Second test, 24 h

- SiO₂ rich compounds, next to the cracks
- •Formation of holes, moving to the center
- Large central hole is formed

MA BEARING FUEL FOR HOMOGENEOUS RECYCLING: IN FR PILE BEHAVIOR

- **SUPERFACT homogeneous transmutation mode in SFR Phénix :**
 - $U_{0.74}Pu_{0.24}Am_{0.02}O_2$ and $U_{0.74}Pu_{0.24}Np_{0.02}O_2$
 - \blacksquare 382 efpd, $P_{LIN} = 380$ to 325 W/cm
 - Burn up = 6.7 at%
- Transmutation rate at mid plan: 28% for 241Am, and 30% for 237Np
- U, Pu, Am and Np radial concentration profiles are very flat : no specific redistribution of MAs
- Microstructure evolution is similar to UPuO2

For still limited power and burn up, no influence of the MAs concentration on in-pile behavior, except for the He gas release (4 times higher / UPuO2)

MA BEARING FUEL FOR HETEROGENEOUS RECYCLING: **IN FR PILE BEHAVIOR**

- **SUPERFACT** heterogeneous transmutation mode in SFR Phénix :
 - $U_{0.6}Am_{0.20} Np_{0.20} O_2$, 4 g MA/cm³
 - 382 efpd, $P_{LIN} = 174 \text{ to } 273 \text{ W/cm}$
 - **Burn up = 4.1 at%**
- Limited restructuration of the fuel:
 - **Limited fuel-cladding interaction**
 - "Cold" fuel: no formation of central hole
 - **High He production and retention**

mm³/g fuel	Xe Kr	He
Standard UPuO ₂ ,6at%	1220	40
UAmNpO ₂ , 4at%	764	2970

No formation of central hole

In a "cold" fuel, the He behavior in the UO₂ matrix has to be carefully studied (potential clad failure under operation)

MA BEARING FUEL FOR HETEROGENEOUS RECYCLING: IN FR PILE BEHAVIOR

Low matrix swelling : He atoms isolated and no mobile

MA bearing blanket

Potential significant swelling

> Fuel—clad interaction risk

T2<T 1100 to 1400°C

Moderated swelling due to high He release

- Conditions of swelling-release has to be known quantitatively, in order to design an heterogeneous MA transmutation pin:
 - On going experimental program (in the HFR and Osiris MTRs, with UO₂ matrix + Am concentrations, open/closed porosity) in order to obtain experimental data in support of fuel design
 - Second experimental phase : for optimizing the microstructure
 - Third phase: high burn up experiments of representative fuel elements under operating and qualifying conditions

POSSIBLE TRANSMUTATION FUEL

- Mixed (U,Pu): Oxide (SFR, GFR, LFR...) versus Carbide (GFR, ...), Nitride (SFR), Metal (SFR, ...)
- **■** Two different technologies:
 - Hydrometallurgy: powders to pellets in fuel pin
 - Pyrochemistry:
 - well adapted to metal fuel
 - aggregates by Vibropack in fuel pin
 - metal fuel casting

OXIDE VERSUS METAL, CARBIDE OR NITRIDE?

Metal :

- A satisfactory option for SFR, good knowledge in USA
- Large on going experiment program in US Labs, using Idaho-ATR (UPuAmZr) and SFR Phénix (PuAmZr)

Carbide :

- An option for SFR, "almost" reference for Gas cooled GFR
- UPuC knowledge in Europe (limited) and in India (large)
- No irradiation tests so far of MA-UPuC
- Pyro phoricity of divided carbide materials

Nitride :

- An option for SFR, UPuN knowledge in Japan, Europe and USA
- Complexity of fabrication process (carbothermic reduction, N15 enrichment?)
- MA-nitride stability as a function of temperature
- PuAmZrN and PuAmN irradiated in SFR Phénix

MA BEARING OXIDE FUELS: DEVELOPMENT OF FABRICATION PROCESS

Laboratory scale process

Synthesis of MA compound powders, starting from separated MA nitric solution (interface co-conversion)

A promising process: the oxalic co-precipitation, calcination, then direct-

powder or UO₂-diluted powder pelletizing

- Characteristics of the powders: physico-chemistry, purity, flowability,
 - sintering properties....
- Technology: continuous precipitation apparatus: vortex effect, pulsed column,...
- Remote handling operations

(TRANSMUTATION) FUEL MODELING

Fuel performance prediction requires understanding of multiple phenomena :

- Thermal conductivity
- Thermal expansion
- Specific heat
- Phase diagrams
- Fission gas formation, behavior and release
- Materials dimensional stability
 - Restructuring, densification, growth, creep and swelling
- Defect formation & migrations
- Diffusion of species
- Radial power distribution
- Fuel-clad gap conductance
- Fuel-clad chemical interactions
- Mechanical properties

Dynamic properties: Changes with radiation effects, temperature, and time

Nonlinear effects
Initial condition dependence
(fabrication route)

(TRANSMUTATION) FUEL MULTI-SCALE MODELING

CONCLUSION

- **Homogeneous** transmutation mode :
 - Satisfactory in pile behavior, "similar" to standard UPuO₂
 - Irradiation tests at high burn up still necessary (Monju, ASTRID,...)
 - Towards the qualification, at pin scale
- Heterogeneous transmutation mode :
 - In pile behavior still to be fully known
 - Concept to be optimized : microstructures, pin design, irradiation conditions,...
 - In pile irradiations: data, feasibility (HFR, Osiris, ATR, Joyo, RJH, Monju, ASTRID,...); EC projects
- Accuracy and validation of nuclear data
- Fabrication operation: remote handling operations at significant scale
- Modeling development
- Curium issue ?

Thank you for your attention

1985 - 1998

1988-1998

1973 - 2010

1967 - 1983

Commissariat à l'énergie atomique et aux énergies alternatives Direction de l'Energie Nucléaire Etablissement public à caractère industriel et commercial | RCS Paris B 775 685 019

ENC 2012 Manchester December 11, 2012