Education of Health Physicists and Health Physics Technicians at Danish Decommissioning

João Silva and Bente Lauridsen

Radiation Protection

- Safety of the environment
- Safety of the workforce
- Reassurance of workers

Radiation Protection Personel at Danish Decommissioning

Health Physics Technicians (RPO?)

Laboratory Technicians

Health Physicist (RPE?)

University degree in Science

24 weeks with 2 – 3 lessons a week
 Each lesson last three hours

20 laboratory exercises

Co-worker training

Written and oral examinations after 26 weeks

Subject	Lessons
Basic mathematics	7
Atom and molecules, Nuclear decay processes	7
Radiation interactions with matter	5
Radiation fields and radiation doses	6
Radiation instruments, dose-meters, and measurement techniques	10
External and internal radiation doses	5
Radiation biology	4
Radiation protection norms	3
Radiation shielding	3
Natural occurring and man made radiation	2
Radiation doses from accidents	2
Radiation hygiene	3
Nuclear facilities at DD, doses from environmental releases, and radiological emergency response	6
Clearance methodology	3
Organisation, documentation, waste documentation system	2

Tuesday

Devices producing radiation (2 of 3)
Accelerators

Wednesday

Radiation fields and radiation doses (6 of 6)

Equivalent dose

Risk factors and Tissue weighting factors

RBE

Collective dose

Operational quantities (H*(10),Hp(0.07), etc.)

Thursday

Instruments and dose meters (3 of 5)

Detectors made of semiconducting materials

Exercise

Energy and efficiency calibration of the Ge-detector at the laboratory

Health Physics Technicians Text book

Health Physics Technicians Laboratory exercises

- Five exercises dealing with germanium detectors energy calibration efficiency calibration evaluation of results
- Four exercises dealing with gas detectors efficiency calibration general use of the equipment
- Contamination monitors
- Shielding
- Mapping of radiation fields
- Dose meters
- Counting statistics
- Instruments for measuring discharges
- Calculation of internal doses
- Clearance measurements

Health Physics Technicians Co-worker training

- Daily routines smear samples radiation measurements determining discharges of tritium
- Participating in planning of decommissioning projects
- Supervising operations
- Calibration of instruments
- Emergency preparedness

Health Physics Technicians Examinations

Before the start of an operation at the Hot Cell facility an air sample is taken over 10 minutes. The flow rate is 45 ℓ /min and the collection efficiency is 100 %. The sample is measured in the laboratory and show 100 Bq of ²³⁹Pu. The planned operation will take 2 hours.

- The inhaled amount of ²³⁹Pu-239 during the operation?
- The committed effective dose from the inhaled Pu-239 (e(50) is 5·10⁻⁵ Sv/Bq)?
- Is this operation justified?

- One year with about one session a week Each session last three hours
- 20 laboratory exercises
- Co-worker training and participating in decommissioning projects
- Course at University of Copenhagen

Subject	Lessons
Radioactivity and ionising radiation	1
Radiation interactions with matter	2
Radiation fields and radiation doses	4
Radiation instruments, dose-meters, and measurement techniques	7
External and internal radiation doses	6
Radiation biology	4
Radiation shielding	4
Radiation protection norms	3
Natural occurring and man made radiation	2
Organisation, documentation, waste documentation system	4
Radiation doses from accidents	2
Radiation hygiene	3
Nuclear facilities at DD, doses from environmental releases, and radiological emergency response	13
Clearance methodology	3
Software (radiation transport, radiation risk, dose calculations etc)	4

Laboratory exercises focussing at the various instruments at the DD-site

- Gas-detectors
- Radiation monitors
- Contamination monitors
- Instruments for measuring discharges and airborne contamination
- Ge-detectors
- etc.

Co-worker training and participation in decommissioning projects

- Calculating internal doses
- Whole body counting
- Clearance measurements

Course at the University of Copenhagen

"Radioactive isotopes and ionizing radiation"

Duration:

8 weeks, two days a week with lessons and laboratory exercises

Three hours of written examination

Finally!

School is over!

