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ABSTRACT 

 
Despite the fact that multiple computer codes have been developed, a robust 
predictive capability for quantifying fuel behavior and constituent distribution in 
metallic fuels and the associated uncertainty is still unavailable; large 
uncertainties and scatter still exist in predictions. Implementation of the 
statistical calibration approach over the previous manually adjusted 
coefficients has enabled rapid assessment of several thousand model 
evaluations that would have previously been impractical. Inclusion of expert 
judgment to the calibration process by weighting the error metric has been 
shown to accurately describe the phase transition temperatures and thermal 
conductivities. Furthermore, careful consideration in implementing the 
statistical approach provides a better understanding of standard variations in 
the model and presents a path forward for reducing model errors, such as 
missing dependence of porosity changes to the fuel’s thermal conductivity 
model. Progressive calibration completed to date has supported the 
development of a more advanced, better-informed model calibration capability 
for improving the model’s predictive accuracy. 

 
1. Introduction  
Model calibration is a systematic process by which predictions with variable parameters 
are compared with experiments to determine the optimal parameter set for model 
accuracy. Models are often calibrated with data available at specific experimental 
conditions, but utilized to predict in domains beyond feasible experiments. Establishing 
confidence in the applicability of these models to new domains requires analysis of 
model uncertainties and errors. To tackle these considerations, a progressive statistical 
approach to calibration was applied to the zirconium redistribution model within BISON. 
The model itself is summarized in [1]. Implementation of a statistical calibration approach 
enables rapid assessment of several thousand model evaluations. Information is added 
to the nominal calibration by inclusion of expert judgment by weighting experimental 
points based on importance, variability, and likely model form errors. A key benefit of 
statistical approach is the resulting posterior parameter and prediction distributions 
providing insight to uncertainties remaining in the model. Bayesian calibration forms 
these posterior distributions are probabilities of parameter values obtained by updating 
prior probabilities given insight from the evaluation of a large set of model samples. 
Resulting posteriors not only improve the model's predictive capability, but also provide 
guidance into potential future steps that may be taken to reduce model errors.  
 
Calibration was applied to ternary metallic fuels. The primary data source for calibration 
was provided by zirconium atom fraction traces measured using electron probe 
microanalysis (EPMA) on irradiated fuel rods (See Fig. 1) during post irradiation 
examination (PIE). Two EPMA scans are available to calibrate against: T179 which was 
irradiated to ~2 a/o burnup [3], and DP16 which achieved burnups around 10 a/o [1]. 



Details of the experimental campaign, including irradiation cycle and rod parameters are 
provided in [5]. 
 

             
Fig 1: Typical irradiated U-Pu-Zr fuel rod with over-laid constituent concentration profiles, 

as well as the simplified phase diagram utilized during the calibration [1]. 
 
Calibration of the zirconium redistribution model focused on multipliers η applied to 
several of the parameters in the combined Soret and Fickian mass flux term formulated 
in [1]: 
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The parameters utilized in the calibration are the three η parameters ηD, ηQ, and 
ηQ*.Each of the calibration parameters and its associated material property are phase 
dependent, resulting in a four diffusional parameter calibration techniques for {ηD}, or 12 
diffusional parameter calibration {ηD, ηQ, ηQ*}. Also included in the calibration are the two 
horizontal temperature transitions A-B and C-D from the simplified phase diagram (Fig. 
1) [1]. In the first stage of the study calibration was limited ηD and the A-B, C-D 
temperature transitions. 
 

2. Model Calibration Framework 
Let us represent a numerical model M such that the “true” values of parameter set t 
provides the best match to experimental measurements y at given control conditions, x. 
Experimental error ε is taken into consideration by stating that model predictions given 
the true model parameters are equal to measurements within the bounds of 
experimental error, 
 
 y(x) = M(x,t)+e(x).  

 
This formulation of a parameterized model assumes that governing physics of the 
system are perfectly represented. In reality, models are rarely exact replicas of reality, 
resulting in model form error ψ, causing even the true parameter set to produce bias 
predictions:  
 
 y(x) = M(x,t)+e(x)+y(x).  

 



Model calibration may be employed when we do not know the true parameter values t or 
the model form error ψ. Bayesian calibration can provide distributions on the best fit 
values θ as well as estimate of model error, as proposed by Kennedy and O'Hagan [2] 
and implemented in a Bayesian context by Higdon et al [4]. Model form error in the 
traditional sense is neglected for the calibration presented herein, such that, 
 
 y(x) = M(x,q).  

 
Rather than following traditional approaches of placing prior assumptions on the model 
error, prediction error for optimized parameters was analyzed, along with incorporation 
of expert opinion to provide suggestions of likely causes of error for future improvements 
of the BISON model. A progressive calibration was followed where more knowledge is 
incorporated to the model calibration step-by-step and new calibration parameters were 
also added to increase complexity and ideally, accuracy of predictions. Experimental 
error is not known for available data in this application and is therefore assumed 
negligible. 
 

2.1 Traditional Model Calibration 
Bayesian calibration samples parameter values from given prior distributions and 
evaluates the model to predict an outcome also measured experimentally. With each 
sample the model prediction is compared to the experimental measurement to calculate 
the prediction error, e. Nominal model error is represented as a vector of the absolute 
value of the difference between model predictions and experimental measurements at all 
available measurement points:  
 

 e(x) = M (x,q)- y(x) .  

 
In Bayesian calibration, if a new sample decreases the prediction error from a previous 
sample it is retained in the posterior distribution. Ultimately, model predictions should not 
be limited to a single fuel rod. Rather, the prediction vector can combine error for 
multiple cases into a single term (for example, combining predictions at T179 and DP16 
irradiation conditions) resulting in simultaneous calibration of predictions across all test 
settings with a consistent parameter set. Errors across all settings and models are 
combined to a single, scalar error term by multiplying the error vector by the transpose of 
itself: 
 

 Calibration Error = e(x)e(x)T .  

 

2.2 Expert-Weighted Model Calibration 
There are cases in which an absolute best fit to experiments as achieved with the 
nominal error term is not ideal given model error and variability in measurements.  For 
example, when a dataset exhibits large scatter in measurements from point to point, 
nominal calibration will attempt to fit to this scatter rather than determining the averaged 
best fit. Likewise predictions in some areas of the prediction may never be attainable 
due to missing physics in the model, however, nominal calibration may find the closest 
possible fit to such areas by sacrificing goodness of fit in others. The ‘black-box’ nature 
of traditional calibration causes such effects to reduce the overall quality of calibrated 
model predictions, particularly for extrapolation to new prediction domains. 
 



We propose taking such factors into account by expert-opinion weighting of the error 
metric. The weighting term is a continuous variable from zero to one applied to each 
individual measurement: 
 

 e(x) = w(x) M (x,q)- y(x) .  

 
In general, higher weighting is given to experiments with low variability as well as 
experiments in important prediction regions such as the phase transition regions around 
the edges of the low zirconium concentration. Suspected model form error is also taken 
into account by applying a lower weighting to prediction regions that the model likely 
cannot replicate due to missing physics. The result of this weighting will hopefully result 
in more accurate predictions in important regions as well as avoidance of unphysical 
parameter compensations in regions where model-form error may dominate. 
 
In addition to increasing efficiency of model calibration and introduction of expert opinion 
in an automated fashion, the statistical approach to model calibration provides a sense 
of remaining uncertainty, with respect to parameter values as well as resulting 
predictions.  
 

3 U-Pu-Zr Parameter Optimization 
As a first attempt at parameter calibration in previous work, visual best-fit calibration was 
applied to the phase dependent diffusivities in [1]. The next logical step was to apply the 
calibration framework described above to the same six parameters. In order to capture 
the subjectively determined regions of importance in the EPMA data, a weighted 
calibration technique was applied to “expert determined” weighting of the data sets. 
From there, the calibration parameters were increased from six to fourteen to further 
investigate the flexibility of the model without the implementation of new physics into the 
models. Lastly, new models were created through the use of the best available reactor 
operating data and full implementation of the metallic fuel models available in BISON. 
 
All simulations except for the last run where the best available data was implemented, all 
runs were run as an axial fuel slice at the location of the EPMA cut. A daily-weighted 
power and fuel surface boundary condition were utilized. Except for a 105 second initial 
power ramp, the power and BC were held constant. Porosity was assumed constant, 
with thermal conductivity degradation factors qualitatively assigned to the porous central 
regions, dense β-phase ring, and semi-porous alpha regions. Refinement to the models 
with time dependent power, temperature, and porosity, was implemented in the “refined 
input” calibration. 
 
For the last run, the temperature boundary condition and pin powers were utilized in a 
full 2D-Rz BISON simulation with the best available models but without zirconium 
redistribution. The temperature BC and axial fission rates were extracted and utilized in 
an axial fuel slide at the location of the EPMA cut. This ensured errors due to pin power 
and temperatures were reduced to the best available operational data. 
 

3.1 Six Parameter Calibration 
Six parameters were first considered in the original U-Pu-Zr model. Since the parameter 
set is assumed to represent the fuel throughout the entire lifetime the same parameter 
values should be used to predict both T179 (~2% burnup) and DP16 (~10% burnup). 
However, model errors, such as neglecting changing porosity in the model, can cause 



the model to calibrate to different parameter values at the different burnup values. 
Accuracy of the model was tested by first optimizing parameters using T179 data alone 
and DP16 data alone.  
 
Five thousand simulations are completed to explore the parameter space. Parameters 
were given a uniform distribution with bounds provided in Table 1, with the condition that 
the A-B transition temperature must always be at least 20 K lower than the C-D 
temperature.  
 
The single best simulation results for independently calibrated cases are shown in Fig. 2. 
Predictions with the T179 optimized parameters appear to be fitting to the scatter of data 
in the outer phase transition, drawing the low Zr β-phase region to higher Zr atom 
fraction than observed in experiments. DP16 optimized parameters predict the inner and 
outer phase transitions accurately, but are unable to capture the subtle transition in the 
bathtub region, instead preferring a sharp drop off to a low Zr atom fraction around the 
0.75 mm radius.  
 
Optimized parameters for the individual cases are then applied for predicting the case 
held out from calibration. For example, parameters optimized for T179 simulations are 
implemented for prediction of DP16 data. If no model form error were present, the 
extrapolated predictions would be expected to adequately predict DP16. Clearly such 
accuracy is not achieved, as illustrated in Fig. 2. Most notably T179 parameters are 
unable to predict the DP16 data set, particularly at the inner phase transition. In addition, 
DP16 parameters over-predict the inner phase transition of T179 while under-predicting 
the outer phase transition. 
 

      
 

Fig 2. Zirconium concentration profiles using the optimized six-parameter calibration 
coefficients. 

 
Ideally, the applied calibration technique would determine parameter values that provide 
the best predictions at the most important regions of the distribution curve and mitigate 
fit to scatter in the data by calibrating with the expert-opinion weighted error metric. 
Weights applied to the U-Pu-Zr cases are shown in Fig. 3. The depleted Zr region of 
T179 is selected as important (w=1) because the data set has less scatter in this region 
and is more representative of an out-of-pile phase diagram, as opposed to the high 
burnup DP16 data where the fission products may have influence over the 
thermodynamics of the system. The outer phase transition and center region of DP16 is 



also given high importance because of the lower scatter in data. The T179 outer phase 
transition and center region with large scatter are weighted at w=0.5. Due to the 
simplistic phase diagram, the shelf of the DP16 bathtub will likely be unachievable with 
the current model form, thus this region is weighted low at w=0.2 to avoid parameter 
compensations in other regions.  
 

      
 

Fig 3. Weights applied to the data sets.  
 
Resulting model predictions with expert-weighted calibrated parameter values are shown 
in Fig. 4 while Fig. 5 shows the mean prediction for both cases when with the combined 
parameter posteriors as well as the accompanying uncertainty bounds.  
Most notable, the outer radius (>1.5 mm) with w=1 shows significant improvement in fit 
from the unweighted case while the inner radius, also w=1, shows lower average 
predictions. The significance of this finding is that by lowering the weight on the depleted 
Zr region, which we know can never be accurately predicted due to missing physics; we 
are able to improve the predictive capability in the regions more adequately modeled.  
 
 

      
 

Fig 4. Zirconium concentration profiles using the optimized weighted six-parameter 
calibration coefficients. 

 



      

 

Fig 5. Upper and lower boundaries of optimized predictions using weighted posterior 
parameter distributions. 

Table 1 compares the posterior parameter distributions of the nominal and weighted 
calibration to the prior distributions. Evaluating the standard deviation of the posterior 
distributions gives an indication the sensitivity of the model to each parameter. Diffusion 
coefficient for the β-phase, ηD,β, is found to have the largest standard deviation in the 
posterior indicating that it is not able to be calibrated well due to having little effect on 
predictions. Diffusion coefficient for the γ-phase, ηD,γ has the lowest standard deviation 
and therefore appears most influential. A likely cause of the tight posterior distribution for 
ηD,γ is the model’s inability to converge to a solution at higher ηD,γ values. Recall from 
Fig. 2 that the combined calibration considering T179 and DP16 simultaneously 
produced the best compromise of results predicting both cases. Values shown in Table 1 
are for combined calibration. 

 

Parameter 
Prior Distribution 

Nominal  
Calibration 

Expert-Weighted 
Calibration 

Min Max Mean Std Mean Std 
ƞD,α 0.01 100 17.3 14.1 17.3 13.2 
ƞD,β 0.01 20 51.4 30.9 50.8 30.8 
ƞD,γ 0.01 100 16.3 11.3 19.8 11.8 
ƞD,δ 0.01 100 0.93 0.69 0.92 0.69 

A-B [K] 850 1100 943 34.7 947 29.7 
C-D [K] 900 1150 1013 25.1 1016 24.0 

 
Tab 1: Summary of posterior distribution statistics for six parameter U-Pu-Zr model 

calibration. 
 

3.3 Fourteen Parameter Calibration 
Next, the number of uncertain parameters in the model is increased with the goal of 
narrowing down specific components of the governing behavior affecting predictions. 
Along with the multiplier against diffusivity pre-exponential, the multipliers against the 
activation energy ηQ and heat of transport ηQ* for each of the four phases is included to 
bring the total number of calibration parameters to 14. 
 



Once again, parameters are optimized for the individual cases first and predictions are 
extrapolated to the hold out case. Resulting predictions are shown in Fig. 6 where 
improvements for T179 and DP16 due to the independently calibrated cases are clear. 
T179 appears to have less reaction to scatter in the data with a smoother fit through the 
averaged zirconium atomic fraction. DP16 predictions are drastically improved, with the 
increased model flexibility allowing a match to measurements throughout the entire 
radius.  
 
Extrapolation of parameters to from one case to another, however, is still found to 
produce large prediction errors indicating missing physics in the model. Behavior of 
DP16 predictions with the T179 parameters is similar to the six-parameter model and 
fails to predict the correct zirconium atomic fraction in any region of the rod and T179 
predictions with the DP16 model parameter over-predicting the bathtub. 
 

      
 

Fig 6. Zirconium concentration profiles using the optimized weighted 14-parameter 
calibration coefficients. 

 
Parameters are then calibrated considering T179 and DP16 simultaneously to find the 
averaged, best fit parameters across both cases. Statistics of calibrated posteriors are 
provided in Table 2. Combined calibration tends to favor DP16 independently calibrated 
parameter values. The ηD,α, ηD,β, and ηD,δ coefficients as well as A-B transition 
temperature have notable change in value from T179 calibration to DP16 calibration. 
 

 
 
 
 
 
 
 
 
 
 
 
 



Parameter 
Prior Distribution 

Expert-Weighted 
Calibration 

Min Max Mean Std 
ηD,α 0.1 10 4.20 2.85 
ηD,β 0.1 100 47.2 27.13 
ηD,δ 0.1 10 2.85 2.92 
ηD,γ 0.1 1 0.66 0.23 
ηQ,α 0.9 1.1 1.03 0.05 
ηQ,δ 0.9 1.1 1.05 0.04 
ηQ,β 0.9 1.1 1.04 0.04 
ηQ,γ 0.9 1.1 0.97 0.05 
ηQ*α 0.5 2 1.13 0.45 
ηQ*δ 0.5 2 1.19 0.57 
ηQ*β 0.5 2 1.27 0.14 
ηQ*γ 0.5 2 1.48 0.95 

A-B [K] 850 950 934 12.4 
C-D [K] 900 1000 986 9.5 

 
Tab 2: Summary of posterior distribution statistics for fourteen parameter U-Pu-Zr model 

calibration. 
 

3.4 Refined Input 
Following expansion of the number of parameters the model can be calibrated against, 
an alternate pathway towards achieving favorable calibration results was tested by 
applying the calibration process to BISON runs that utilized the best available data and 
models. By taking away as much uncertainty as possible associated with the reactor 
cycle data, rod fabrication data, and BISON implementation, the calibration may provide 
insight into if the underlying BISON model is adequate to provide the necessary baseline 
simulation capabilities.  
 
The refined input models were created by initially starting with simulations of the full 
reactor pins. The experimental data was utilized to try and capture the reactor operating 
conditions as close as possible to the environment the pins were subjected to. Utilizing 
the cut height of samples used for the EPMA scans, a fuel surface temperature profile as 
a function of temperature was extracted from the full pin simulations and applied as a 
boundary condition to one dimensional calibration models. In addition, the currently 
implemented fission gas swelling model in BISON was utilized to provide a porosity 
degradation term to the thermal conductivity of the model. As discussed in [4], the model 
is an oversimplification of the actual swelling behavior, and is targeted for replacement. 
 
The refined input cases were run with similar prior parameter distributions as the six 
parameters calibration and weight functions shown in Fig. 3. Best case predictions with 
the independently and simultaneously calibrated parameters are compared in Fig. 7. The 
refined model is found to provide better overall predictions for both T179 and DP16, 
particularly at the inner phase transition of T179 and outer transition of DP16. However, 
extrapolating individual case calibrated parameters is still found to be insufficient 
indicating remaining model form error exists. In fact, when the DP16 model is run with 
T179 best case parameters the simulation is not able to converge, thus no predictions 
with T179 parameters can be compared. 
 



      
 

Fig 7. Zirconium concentration profiles using the optimized weighted six-parameter 
calibration coefficients with refined model inputs. 

 
Model parameters were also calibrated using T179 and DP16 simultaneously, again 
using the expert-opinion weighting function. Predictions given the combined calibration 
continue to encompass the majority of T179 data, but begin to under predict the DP16 
outer phase transition. Once again, results shed light on likely model form errors making 
prediction of both T179 and DP16 cases unreasonable with a single set of model 
parameters. Compared to prior uncertainty the feasible range from ηD,α, ηD,γ and ηD,δ is 
clearly reduced, while the ηD,β remains highly uncertain and therefore likely uninfluential. 
A bimodal trend is beginning to form in the C-D transition temperature, indicating the 
high transition temperature needed to predict T179 accurately in contrast with the low 
transition temperature needed to predict DP16 accurately.  
 

 

Nominal  Expert-opinion 
Weighted 

14-parameter  Refined Input  

Mean Std Mean Std Mean Std Mean Std 

T179 0.078 0.007 - - 0.074 0.004 0.159 0.052 

DP16 0.101 0.012 - - 0.054 0.004 0.139 0.044 

Combined 0.118 0.010 0.094 0.011 0.070 0.003 0.195 0.045 

 
Tab 3: Root mean square error mean and standard deviations for the different calibration 

techniques. 
 

5 Summary and Conclusions 
Calibration of the original U-Pu-Zr BISON model along with investigation into parameter 
and prediction tradeoffs revealed model form error. When calibrated to either T179 or 
DP16 independently, parameters do not extrapolate accurate predictions on the other 
rod indicating a lack of physical accuracy in the model. Although consideration of both 
rods simultaneously allows for a calibrated parameter set to be found that reduced 
uncertainty in predictions across both rods, the indication of missing physics remains 
concerning. Keeping this error in mind, qualitative weighting was applied to inform the 
calibration of regions less likely to match experiments due to missing physics. This 
expert-weighted calibration was found to improve the predictive capability. It is likely that 



applying lower weighting at areas with known model discrepancy helped to prevent 
unphysical compensation between parameters.  
 
The fourteen parameter model, while providing more flexibility in the zirconium 
distribution across the radius for DP16, is not found to be a significant improvement over 
the six parameter model in terms of extrapolation accuracy. The refined model is found 
to improve predictions and result in reasonable prediction bounds. Discrepancy in 
calibrated parameters between the two cases remains, indicating a missing dependency 
in the model for which parameters should be reliant. This tradeoff maintains the prior 
conclusion that model form error exists and is prohibitive to matching both data sets. 
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