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ABSTRACT 

Fission gas release models used in FRAPCON and FAST are based on equations 
that describe the physical transport phenomena that control release from the fuel 
pellet to the rod void volume of fission gas produced during irradiation.  Although 
these models are physically based, many of the parameters that control the release 
such as the impact of burnup on diffusion and bubble formation and saturation are 
critical to the accurate prediction of fission gas release, but cannot be measured in 
any quantitative way.   To overcome this problem, these parameters have been 
empirically derived to provide a best fit to the available data that includes rod 
puncture data and electron probe microanalysis (EMPA) and X-ray fluorescence 
(XRF) data of radial location of residual gas within the pellet.   
 
In general, a heuristic approach for deriving these parameters via practical 
implementation of expert analyses on just a few dependent variables has been 
shown to perform quite well in most situations.  In this paper, we present an approach 
for applying machine learning to expedite model development.  This approach is 
based on developing a deep artificial neural network which describes FRAPCON’s 
fission gas release models, and optimizes parameters by a differential evaluation 
algorithm.  This approach allows us to quickly and accurately tune physical models 
based on expert judgment, and works as a human-in-the-loop approach, to assist 
the modeler in identifying and addressing regions of high uncertainty in a multi-
parameter space.  Results of the updated fission gas release model will be shown 
for all the FAST assessment data.   
 

 
1. Introduction 
 
The fission gas release models in FAST [1] are based on the mechanisms known to control 
release from the fuel pellet to the rod void volume.  Many of the specific parameters that control 
these processes are known to be impacted by a number of factors during irradiation such as 
temperature, burnup and neutron flux.  It would be ideal if the specific parameters could be 
derived from a mechanistic understanding of the phenomena or from experiments designed to 
measure these parameters.  However, there is currently no way to make a direct measurement 
of these parameters under typical conditions.  Historically, what has been done to overcome 
this problem for the United States Nuclear Regulatory Commission (US-NRC) fuel codes is to 
establish a large database of fission gas behavior measurements that span a large range of 
operating conditions and then empirically derive the parameters that control the known fission 
gas release mechanisms.   
 
This approach to calibrating the model parameters based on fits to these data sets has proved 
to be effective and the resulting fission gas release predictions have remained reasonable as 
more data have been added to the dataset.   
 
The major drawback of this approach is that it can be quite time consuming and labor intensive 
to determine these model parameters.  Additionally, currently there are two fission gas release 



models in FAST that the user may select between and it is known that each provides good 
results in certain areas and less ideal results in other areas.   
 
The goal of this current work is to use machine learning to automate the model parameter 
selection and to provide model parameters for a single fission gas release model that provides 
best-estimate predictions to fission gas release in all situations.  Previous work that used neural 
networks to model fission gas release focused on using a neural network to predict fission gas 
release directly [2,3], while this work uses a neural network to predict specific parameters in 
the current semi-mechanistic model that had previously been empirically derived.  After this 
fitting, the neural network is not used in future calculations, but rather the predicted parameters.   
 
2. Fission Gas Release Database 
 
The data used to calibrate the fission gas release model parameters is described in greater 
detail in the FRAPCON integral assessment document [4].  This data set consists of four 
general sets of data; 

• Rod puncture data from steady-state irradiation from rods irradiated to various burnup 
levels over a wide range of power levels and operating conditions 

• Rod puncture data from slow and fast (12 hours to 5 seconds) power ramps to various 
power levels on rods and rod segments that had previously been irradiated to various 
burnup levels.   

• Rod puncture data from steady-state irradiation from rods irriadiated to very high 
burnup (70-100 GWd/MTU) beyond the level that the fuel codes are typically qualified.   

• Electron probe microanalysis (EPMA) and X-ray fluorescence (XRF) data from pellet 
cross sections that have been irradiated to various burnup levels at various powers.  
These data can be used to determine the quantity of residual fission gas that exists in 
the grains and on the grain boundaries.   

 
Because the NRC fuel codes, FRAPCON and FAST are used to assess the predictions of 
vendor safety analysis codes it is critically important that they not significantly under predict 
fission gas release.  Although the majority of fuel rods in a commercial light water reactor 
release very little fission gas (1-2%) it is those rods that release significantly more fission gas 
(5-20%) that are of regulatory concern as these are the rods that will challenge the safety limits 
related to rod internal pressure and fuel temperature.  Therefore, the database used to assess 
the NRC fuel codes preferentially includes rods operated at higher power with higher release.  
Additionally, the uncertainty assessment that is performed on the codes is designed to assess 
the prediction of the rods with high release.   
 
As the U.S. industry is moving toward operation to burnup beyond 62 GWd/MTU, it is important 
to assess the ability of the code to predict fission gas release at high burnup as a significant 
quantity (5-20%) of fission gas has been observed to be released from rods operating at 
moderate power levels that would not have released as much fission gas at lower burnups.  
With this in mind more puncture data have recently been added to the assessment database 
at higher burnup levels.   
 
Finally, the addition of the EMPA and XRF data was included in order to provide initial gas 
distribution for a transient gas release model applied during reactivity initiated accidents where 
the time for diffusion is limited but the fuel temperature may increase rapidly causing a 
significant release in gas existing on the grain boundaries.   
 
3. Overview of FAST fission gas release models and assessment data 
 
The two models used in FAST are both based on a two stage fission gas release model.  In 
these models, the fuel rod is divided into axial nodes and radial rings.  The gas produced in 
each ring is calculated based on the burnup in that area.  The diffusion coefficient for fission 



gas in UO2 is calculated for each ring based on the temperature, burnup, and power level in 
each ring.   
 
Diffusional release from the grains based on the average grain size is calculated for each ring 
based on the fission gas quantity in the grains, the diffusion coefficient for each ring, and the 
current time step size.  This released gas is assigned to the grain boundaries.   
 
Re-solution of some of the gas on the grain boundaries is determined based on the grain size 
and the diffusion coefficient for each ring.  Finally, a grain boundary saturation concentration 
is determined for each ring based on temperature, grain size and gas pressure in the rod.  
When this saturation concentration is exceeded then gas on the grain boundaries from that 
ring is released to the void volume of the rod.  No gas transport across various rings to the 
void volume is calculated and this is assumed to not be necessary as the fuel pellets are 
considerably cracked due to the large temperature gradient across the pellets.   
 
The final source of fission gas release is an athermal release that is a function of pellet average 
burnup.  This release is based on observations of fission gas release from rods with very low 
power levels where diffusional release does not predict any release.   
 
The following section will provide a brief description of the two fission gas release models in 
FAST and the assessment of each model.   
 
3.1. Modified Forsberg-Massih model 
 
The modified Forsberg-Massih model uses the general solution method proposed by Forsberg 
and Massih [4] with modifications to the recommended model parameters to better fit the 
database of fission gas release.  This was the original model in FRAPCON [6] and is the default 
model in both FAST and FRAPCON.  The parameters have been fit to provide a best estimate 
prediction of high power steady-state data up to 70 GWd/MTU and power ramped data up to 
62 GWd/MTU.  This comparison is shown in Figure 1 and the standard deviation of the steady-
state predictions is 2.6% absolute and the standard deviation of the power ramped predictions 
is 5.4% absolute.   
 
When this model was compared to very high burnup (>70 GWd/MTU) data it did not provide a 
particularly good fit to the data.  Additionally, it was never fit to predict the radial distribution of 
the gas remaining in the grains and does not predict this data well.   

 
Figure 1:  Steady-state and power ramped model to data predictions with both models 
 
 
3.2. FRAPFGR model 
 
In order to better predict the radial distribution of the gas in the grains and that on the grain 
boundaries and to better predict very high burnup data, the FRAPFGR model was developed.  
This model is based on the modified Forberg-Massih model, with several additional 
mechanisms included.  These mechanisms include; a grain growth model and a high burnup 



rim model.  The high burnup rim model includes the restructuring of the grains to very small 
grains and in increase in the fuel porosity that is observed in the high burnup rim.   
 
This model provides reasonable, but less ideal predictions of the steady-state and power 
ramped data with standard deviations of 4.3% and 8.1% for steady-state and power ramped 
data, respectively.  These comparisons are shown in Figure 1 where it can also be seen that 
the FRAPFGR model underpredicts the high release ramp test data.  It is also noted that the 
FRAPFGR model seems to underpredict the high release power-ramp data which is not 
desirable.   
 
However, the FRAPFGR predicts very high burnup data considerably better than the modified 
Forsberg-Massih model as seen in Figure 2, and predicts the radial distribution of gas on in 
the grains well.  Figure 3 shows an example of several of these predictions.   
 

 
Figure 2:  High burnup steady-state fission gas release data and predictions for both models 
 

 
Figure 3:  Example of predictions of the FRAPFGR model to radial distribution of gas within 
the grains 
 
The goal of this work is to develop a single fission gas release model that provides good 
predictions of all of the available data.   
 
4. Approach to model calibration using artificial neural networks 
 
The fission gas release model, while developed with physical bases in mind, utilizes a number 
of parameters to perform empirical fitting to experimental data. The parameter fitting process 
is challenged by the nonlinearity in the relationships as well as uncertainties in experimental 
measurements.  This nonlinearity in the parameter space necessitates a confluence of robust 
machine learning architectures capable of complex pattern recognition.  The developed 
architecture is demonstrated in the flow diagram shown in Figure 4. 
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Figure 4:  Flow diagram of parameter fitting process 
 
The fitting process is enhanced by developing a framework of optimizing parameters such that 
a surrogate model can produce predictions of fission gas release accurately.  The optimized 
parameters are tested within FAST, and the output generated then feeds into another iteration 
of the surrogate model.  This optimization loop is continued until some convergence criteria is 
achieved.  In this work, the loop is exited if the improvement no longer reduces the overall root-
mean squared error of fission gas release predictions. 
 
4.1. Problem Description 
 
Let 𝑓𝑓 be the response of FAST with given an input of 𝑧𝑧𝑖𝑖 for experiment 𝑖𝑖 with fission gas release 
model parameters, 𝑥̅𝑥, then the fission gas release can be represented as: 

𝑦𝑦𝑖𝑖 = 𝑓𝑓(𝑥̅𝑥, 𝑧𝑧𝑖𝑖)     Eq. 1 
 
where the error of the experimental measurements, 𝑌𝑌𝑖𝑖, assuming no measurement uncertainty, 
and FAST is: 

𝑒𝑒𝑖𝑖 = |𝑌𝑌𝑖𝑖 − 𝑦𝑦𝑖𝑖|     Eq. 2 
 
Therefore, the objective function is a minimization on such that: 
 

𝑚𝑚𝑚𝑚𝑚𝑚𝑥̅𝑥∈𝑅𝑅 = |𝑌𝑌𝑖𝑖 − 𝑓𝑓(𝑥̅𝑥, 𝑧𝑧𝑖𝑖)|    Eq. 3 
 
4.2. Differential Evolution 
 
The optimization technique utilized in this work is that of differential evolution (DE) [7], [8]. 
Differential evolution is a population-based, global optimization algorithm technique that is 
useful for multimodal problems where gradient-based methods fail. DE is a class of 
evolutionary algorithms, which utilize population selections to maintain diversity of the solution 
space in order to efficiently find globally minimized solutions. 



 
Generally, the diversity is maintained, while simultaneously achieving improved fitness, by 
comparing candidate solutions with the current population of solutions and only survive (or 
continuing to the next iteration) if they possess higher fitness (or improve minimization) than 
the current population. The candidate solutions are generated according to the current 
population, utilizing many different rules.  Those selected will be discussed here. The starting 
population is generated by a uniform random distribution over some starting interval. 
 
All parameters are optimized with a bounding interval to allow for a stable optimization.  This 
bounding interval, however, is allow to “walk” to the optimized solution, which is updated on 
each iteration. The progress is purposefully slowed with a relaxation factor.  In particular, this 
is necessary due to the very large uncertainty in many parameters (like diffusion coefficient).  
Starting coefficient parameters intervals are set to be ±20% of their default value. The 
distributions are modified more slowly with a starting interval of ±8% of their default value due 
to the nature of the distribution searches.  A Savitzky-Golay filter is used to smooth the 
response resulting from the random perturbation [6].  Despite the ±20% variation on the default 
value for coefficient, for example, this optimization scheme is able to explore the entire solution 
space as it gradually reaches a globally optimal solution. 
 
Inevitably, evolutionary algorithms require many iterations to achieve convergence, and 
despite FAST running very quickly each realization, a surrogate model, 𝑓𝑓, that can be run 
thousands of times a second is necessary to achieve convergence. The surrogate model is 
only an approximate representation of FAST: 
 

𝑓𝑓(𝑥̅𝑥, 𝑧𝑧𝑖𝑖) ≈ 𝑓𝑓(𝑥̅𝑥, 𝑧𝑧𝑖𝑖)     Eq. 4 
 
which is trained on a few hundred realization of FAST with random permutations of 𝑥̅𝑥 . A 
deep neural network was therefore explored as a potential option for modeling FAST as a 
surrogate model candidate. 
 
4.3. Deep Neutral Network Architecture 
 
Deep neural networks have become popular today for image classification of rather complex 
imagery due to their innate potential to learn highly nonlinear feature representations [7]–[9]. 
These were applied in this work to produce a low-order model between the fission gas 
release model parameter space and the error between the FAST predictions and 
measurements. Neural networks have been utilized to model fission gas release previously 
[10], [11], but this approach is distinctly different.  The model is not built to represent data, 
but rather the performance of FAST as a function of the fission gas release model 
parameters. 
 
Specifically, the surrogate model is trained to describe the error in FAST’s predicted release 
to measured data, so Equation 4, is modified: 
 

𝑓𝑓(𝑥̅𝑥, 𝑧𝑧𝑖𝑖) ≈ |𝑌𝑌𝑖𝑖 − 𝑓𝑓(𝑥̅𝑥, 𝑧𝑧𝑖𝑖)|    Eq. 5 
 
The surrogate model is only trained on a subset of the FAST solution (each FAST solution 
being one realization of a random set of parameters for all FGR validation case).  The initial 
subset of the solutions is a total of 420 realizations.  The neural network model used in this 
work is trained with 80% of the FAST realizations with the remaining 20% used to validate 
model performance.  With each update from the global optimization, another 60 random 
parameters are used with the new optimal solution as a mean, increasing the number of 
realizations for training by 60 (see Figure 4). 
 



Adagrad is used to optimize the network, with an initial learning rate of 0.004, and a linear 
decay rate for 250 epochs [12]. Rectified linear units were used for all activation functions, 
except for the output, which utilized linear functions. [13] 
 
The final neural network architecture is displayed in Figure 5.  The dense_X are fully-
connected layers with X number of activation units, C1D_Y1,Y2,Y3 are 1-dimensional 
convolutions with Y1, Y2, and Y3, filters, kernel size, and strides.  All convolution layers used 
valid padding. AvgPooling is average pooling with a pool size of 2, and dropout_Z is dropout 
with Z percentage of units randomly dropped. [14]  
 

 
Figure 5:  Artificial neural network architecture  
 
 
4.4. Interface with FAST 
 
A modified version of FAST was created to read coefficients for FRAPFGR model from a file 
to accomplish the optimization described above.  In this way, the neural network could easily 



modify these coefficients.  The first part of this work was to identify the model parameters which 
had the smallest impact on fission gas release and radial distribution.  This was performed by 
performing a sensitivity analysis explicitly using the surrogate model.  With this, the model 
parameters that had minimal impact on fission gas release and radial distribution of gas were 
identified and eliminated.  During this process, it was determined that the form of some models 
may not be appropriate to correctly model observed behavior and the final form of the models 
were included as a look-up table to give the neural network more flexibility.  A new function is 
fit to these values after the values in the look-up table are optimized 
 
5. Updated FRAPFGR model 
 
The final results from the updated FRAPFGR model are shown in Figures 6, 7, and 8.  The 
modified model provides reasonable predictions of the steady-state and power ramped data 
with standard deviations of 4.1% absolute FGR and 6.6% absolute FGR for steady-state and 
power ramped data, respectively.  The model continues to provide good predictions of the very 
high burnup data as well as the radial distribution of gas on in the grains.  As discussed in 
Section 2 the database preferentially includes rods with high release and the assessment uses 
an absolute standard deviation rather than a relative standard deviation as these are the rods 
that are most limiting from a safety perspective.   

 
Figure 6:  Steady-state and power ramped model to data predictions with updated FRAPFGR 
model 

 
Figure 7:  High burnup steady-state fission gas release data and predictions with updated 
FRAPFGR model 

 
Figure 8:  Example of predictions of the with updated FRAPFGR model to radial distribution of 
gas within the grains 



 
 
6. Future use of artificial neural networks in fuel performance modeling 
 
This application of an artificial neural network to inferring material behavior values could be 
used in other aspects of nuclear fuel performance modeling.  Certainly, it could be applied to 
the fission gas release modeling of other fuel types such as mixed oxide (MOX) fuels or other 
advanced fuels.  Additionally, it could be used to model fuel cracking and radial relocation in 
nuclear fuels, or pellet fragmentation and axial relocation during loss-of-coolant accident 
(LOCA).   
 
This technique is available to any fuel performance phenomena where the general 
mechanisms that control the phenomena are known and a significant body of performance 
data are available, but the specific parameters that control these processes are not well known.   
 
7. Conclusions 
 
The fuel performance codes FRAPCON and FAST have contained two fission gas release 
models.  The modified Forsberg-Massih model is the default model and applicable to steady 
state and power ramped rods up to 62-70 GWd/MTU.  The alternate model, FRAPFGR, 
provides better predictions of very high burnup (>70 GWd/MTU) fission gas release and 
provides a good prediction of gas distribution radially within the fuel grains.  This distribution is 
important in predicting fission gas release during severe accidents such as reactivity initiated 
accident and loss-of-coolant accident.  The FRAPFGR also includes models for more of the 
phenomena known to change within the pellets during irradiation 
 
A machine learning technique using an artificial neural network, with robust global optimization, 
such as differential evolution, was used to determine more ideal values for the empirical 
parameters within the FRAPFGR, such that it can provide estimates of fission gas release for 
steady state and power ramped rods that are as good as the modified Forsberg-Massih model 
while continuing to provide good predictions of very high burnup (>70 GWd/MTU) fission gas 
release gas distribution radially within the fuel grains.   
 
This technique could be applied to other areas of fuel performance modeling and is available 
to any fuel performance phenomena where the general mechanisms that control the 
phenomena are known and a significant body of performance data are available, but the 
specific parameters that control these processes are not well known.   
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