Pre-Conceptual Study on the Review Framework for the Radiation Shielding Safety of the PWR Spent Fuel Cask Interim Storage in Korea

> TopSeal 2006, Olkiluoto, Finland 2006. 9. 17 - 9. 21

> > **Byeong-Soo Kim**

Korea Institute of Nuclear Safety Daejeon, Korea

Contents

- » 1. Introduction
 - National Policy on SNF management
- » 2. Review Framework of the Shielding Safety
 - Pre-conceptual structure
- » 3. Case Study
 - Review reference storage model, Source Terms, Shielding Analysis
- » 4. Conclusion

1. Introduction

- Regulatory demand for the interim storage for PWR spent fuels around 2016 in Korea
 - » The national policy is that spent fuels be stored within each NPP site until 2016
 - Around 2016, the interim storage facility for PWR spent fuels might be considered
 - » Regulatory demand on the safety review of interim storage facility might occur
 - Necessary to develop a review framework
- Review framework being developed NOW !

1.1 The Latest National Policy on SNF Management

In the 253th AEC (2004)

- » National policy on SNF management
 - to be decided in the view of the domestic and international technology development later on, through public deliberation and consensus
- » Temporary Storage of SNF
 - to be stored at each NPP site until 2016, by expanding existing onsite storage capacities
 - High density storage racks & onsite transportations

• After 2016 ?

The possibility of the interim storage

1.2 Overview of National Framework of SNF Management

1.3 Projection of SNF Inventory upto 2020

2. Review Framework for the Radiation shielding Safety

Currently in the pre-conceptual development

 Details of the interim storage not determined. So, the framework can be changed.

• 3 Components

2.1 Review Procedures

3. Case Study

Preliminary application to PWR spent fuel

cask interim dry storage

» Review reference storage

- 5 w/o U-235 enrichment
- 50,000 MWD/MTU Burnup
- 7 years of cooling
- 24 fuel assemblies
- » Source terms evaluation
 - ORIGEN-ARP (SCALE 5.0)
- » Shielding analysis
 - SAS 4 (SCALE 5.0) & QAD-CGGP-A

3.1 Source Terms

Photons & Neutrons » Spectrums & Intensities • ORIGEN-ARP code

group	upperenergy	bwerenergy	photon (#/sec)
1	1.00E+01	8.00E+00	4.91E+06
2	8.00E+00	6.50E+00	2.31E+07
3	6.50E+00	5.00E+00	1.18E+08
4	5.00E+00	4.00E+00	2.94E+08
5	4.00E+00	3.00E+00	7.00E+11
6	3.00E+00	2.50E+00	7.68E+12
7	2.50E+00	2.00E+00	3.13E+14
8	2.00E+00	1.66E+00	1.09E+14
9	1.66E+00	1.33E+00	1.54E+15
10	1.33E+00	1.00E+00	4.09E+15
11	1.00E+00	8.00E-01	1.74E+16
12	8.00E-01	6.00E-01	9.18E+16
13	6.00E-01	4.00E-01	4.37E+16
14	4.00E-01	3.00E-01	4.25E+15
15	3.00E-01	2.00E-01	5.74E+15
16	2.00E-01	1.00E-01	2.13E+16
17	1.00E-01	5.00E-02	2.35E+16
18	5.00E-02	1.00E-02	7.61E+16
		Totals	2.90E+17

group	upperenergy	bwerenergy	neutron(#/sec)
1	2.00E+01	6.43E+00	1.47E+08
2	6.43E+00	3.00E+00	1.55E+09
3	3.00E+00	1.85E+00	1.72E+09
4	1.85E+00	1.40E+00	9.16E+08
5	1.40E+00	9 .00E - 01	1.14E+09
6	9.00E-01	4 .00E - 01	1.15E+09
7	4 .00E - 01	1 .00E - 01	5.26E+08
8	1.00E-01	1.70E-02	7.75E+07
9	1.70E-02	3 .00E - 03	5.55E+06
10	3.00E-03	5.50E - 04	4.11E+05
11	5.50E-04	1 .00E - 04	3.23E+04
12	1.00E-04	3 .00E - 05	2.27E+03
13	3.00E-05	1 .00E - 05	3.59E+02
14	1.00E-05	3 .05E - 06	7.11E+01
15	3.05E-06	1.77E-06	8.03E+00
16	1.77E-06	1.30E-06	2.36E+00
17	1.30E-06	1.13E-06	7 .60E - 01
18	1.13E-06	1 .00E - 06	5.44E-01
19	1.00E-06	8 .00E - 07	7.70E-01
20	8.00E-07	4 .00E - 07	1.25E+00
21	4 .00E - 07	3.25E-07	1.83E-01
22	3.25E-07	2.25E-07	2.13E-01
23	2.25E-07	1 .00E - 07	2.03E-01
24	1.00E-07	5 .00E - 08	5.52E-02
25	5.00E-08	3 .00E - 08	1.62E-02
26	3.00E-08	1 .00E - 08	1.14E-02
27	1.00E-08	1 .00E - 11	2.75E-03
		Total	7.23E+09

10

3.2 Shielding Analysis

Geometry Modeling

- » Homogenization and Simplification
 - Single cask modeling
 - Multi casks (an array of 2 x 5 casks)

Dose Conversion Factor

• ANSI/ANS-6.1.1-1977

3.3 Preliminary Calculation

- » Dose rates due to the direct radiation
 - Compliance with the acceptance criteria [0.25mSv/yr]
 around 200 meters (single cask), 300 meters (2x5 casks)
 » At the final, radioactive effluents will be considered

3.3 Preliminary Calculation

- » Photon dose rates for the array (QAD-CGGP-A)
 - Within the array
 - » Distribution of photon dose rates
 - With the distances
 - » Different with the direction of the array

4. Conclusion

- Review framework for the shielding safety
 - » Pre-conceptual structure developed
 - » Preliminary analyses performed
 - Review reference modeling, source terms, photon dose rates
 - » Further study will be continued to cover the missed issues
 - neutron streaming, Co-60 gammas, radioactive effluents, etc.

» Expected to satisfy the regulatory demand in the near future for the interim storage in Korea

Thank You ^^