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TRU waste repository planed in Japan

-Located a few hundreds meter depth
-Multi-barrier system of concrete/mortar and bentonite layer.

-bentonite layer (low Kw) ->  Diffusive dominant in EBS
-concrete/mortar (low De) ->  Restrict diffusion flux from 

EBS

Cementitious material
  (Low diffusive)

Waste Packages

Bentonite laye
  (Low hydraulic conductive)
Concrete lining

Rock

- Long-term alteration of EBS by the interaction of 
cementitious materials and bentonite should carefully be 
examined.
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Preliminary analysis of the alteration of 
EBS analyzed by coupled method of  

geochemical reaction and mass transport
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Data and assumptions
in the preliminary analysis

Data
Geochemical properties of initial and secondary minerals

Selection of minerals
Equilibrium constants
Dissolution rate / precipitation rate
Density of minerals

Mass transport properties of barrier materials
Relationship between De vs. porosities.
Relationship between Kw vs. bentonite density and 
mineral contents.

Influence of interactions
Mechanistic properties
Location of the precipitation of secondary minerals

Assumptions
Minerals were selected from experiments and natural 
analogous studies.
Local equilibrium assumption was used in reference case.
De and Kw were estimated from empirical equations.
Mechanistic influence was neglected.
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Experiment
Geochemical

reactions
Mass

transport
phenomena

Natural
analogous

study
Coupling

Long-term alteration of  the barrier
system

Barrier performance considering
alteration phenomena

Nuclide migration analysis

Long-term safety assessment
considering alteration phenomena

Numerical model simulation

Study program of “Evaluation Experiments
of Long Term Performances

of  Engineered Barriers” by RWMC 

Solution
O ring

Filter

CementBentonite
Specimen size：Φ50mm×20mmH

50mm

Solution
O ring

Filter

CementBentonite
Specimen size：Φ50mm×20mmH

50mm
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Experiments 
and numerical model analysis

Experiments
Cement alteration tests
Bentonite alteration tests
Interaction of bentonite/cementitious material

Numerical model analysis
Analysis of experiments and modification of 
the model
Analysis of natural analogous studies and 
modification of the model
Long-term performance assessment of EBS 
using modified model
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Can dissolution of Fray Ash Cement
be predicted using geochemical 

model of OPC ?
OPC has been studied as the 
representative material of cements.
Fry Ash Cement has fine structure 
and low De.   
Dissolution test of FAC has 
performed
Concentrations of major elements 
were predicted using the model.
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Selection of secondary minerals can 
change the result of the prediction of 

long-term performance of EBS

Minerals identified in experiments or natural analogous 
studies are selected in the model. 
Alteration of montmorillonite to analcime is identified.
Alteration of montmorillonite to CSH and laumontite isn’t 
identified.
Reverse reaction of analcime to montmorillonite isn’t 
identified.

SiO2

Al(OH)3 Ca(OH)2,Na2O

Minerals  in bentonite

Secondary minerals

Minerals in cement

Distribution of minerals
laumontite

montmorillonite

Rock    Bentonite/Sand  Concrete/Mortar

analcime
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Reactions at the boundary of 
bentonite/cementitious materials

In this experiments, geochemical reactions
affected by mass transport phenomena will be 
observed.
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The location of CSH precipitation
isn’t made clear

It isn’t clear that CSH precipitates in bentonite or mortar.
The location of CSH precipitation can affect the change of 
diffusivity and mass transport conditions.
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Will cracks of the mortar
be clogged or grow ?

Cementitious materials are made of cracks and 
intact matrix.
Diffusion and advection column tests of cracked 
mortar were performed. 
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Cracks were clogged
by secondary minerals.
Model calculation
showed that, 
dissolution of mortar is 
controlled not by the 
flux in the crack but by 
the low diffusivity of 
matrix.

These results 
indicates that, mortar 
can be treated as low 
De material.
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Low dissolution rate of montmorillonite 
affects long-term alteration of EBS

Kinetic dissolution model
of montmorillonite was 
selected in TRU-2 report.
(Non-liner equation of 
Sato-Cama)
Dissolution of 
montmorillonite is greatly 
affected by the kinetic 
models.
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Bentonite can greatly alter 
in saline ground water condition

Repository can be constructed near the ocean.
Cement model was examined under saline water condition.
Alteration of montmorillonite to analcime was identified under 
high Na concentration and relatively low pH condition.
Kw model of bentonite was expanded to saline water condition.
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Geometry and conditions of 
the numerical model analysis

Conditions of reference case
OPC is selected. (FAC is selected in another case.)
De of mortar/concrete is assume to be that of low diffusive 
matrix region.
(Averaged De of matrix and crack is assumed in conservative 
high De case.)
Local equilibrium is assumed. (Kinetic dissolution is assumed 
in another case)
Rain water case is selected. (Saline water is selected in 
another case)

rock bentonite/sand and waste package

groundwater flow

hydraulic gradient 1%, hydraulic
conductivity 1E-8 m/s

70% bentonite
 initial Kw = 5E-13m/s,
changes with reactions.

mortar, concrete

OPC or FAC
 initial De = 2E-11 m2/s, OPC)
          De = 2E-12 m2/s (FAC)

3m 0.6m 1m 2.5m

Center of the
repository tunnel

OPC

concrete lining
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Numerical model analyzed cases

Saline water caseGroundwater type

FAC caseCement type

Kinetic dissolution of 
montmorillonite.

No formation of laumontite

No reprecipitation of 
montmorillonite

Selection of the minerals

Monotonous increase of De of 
concrete 

Crack model caseMass transport property of 
cementitious material

Reference case (OPC)Reference

Conservative high De in 
mortar/concrete

Conservative case
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Time dependent alteration of EBS

Alterations occur from 
the interface of 
bentonite and mortar/ 
concrete.
Montmorillonite alters 
to zeorite (laumontite
and analcime).
CSH precipitates at 
the interface.
Alteration speed is 
high at the early stage, 
but it slows down as 
time extends.
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Low  De in the mortar reduces the 
alteration of EBS

In conservative high De case, small portion of 
montmorillonite remains at the center of bentonite.
In reference case, montmorillonite remains at the 
outer part of bentonite layer.
If low diffusive FAC is used, most of 
montmorillonite remains even after 100,000 years.  

V
ol

um
e 

fr
ac

tio
n 

of
 m

in
er

al
s(

-) Conservative high De Reference(OPC)        FAC

Rock Bentonite/Sand Concrete/Mortar

CSH
chalcedony

mont

100,000y 100,000y 100,000y Ca(OH)2

CSH
C3AH6

C3ASH4

C2ASH8

C3AS3

AFt
Calcite
Brucite
Chalcedony
Analcime
Laumontite
Mont



18

Non-liner kinetic dissolution of 
montmorillonite greatly restricts the 

alteration of EBS 

Dissolution rate function significantly affect the 
alteration of EBS.
If Sato-Cama’s non-liner equation model is 
selected, in which dissolution rate is extremely 
low near equilibrium condition, most of 
montmorillonite remains after 100,000 years.
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Montmorillonite alters to analcime 
under saline water condition

With high Na concentration of saline water and 
high pH condition of mortar/concrete, most of 
montmorillonite alter to analcime in relatively 
short time.
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Time dependent change of Kw and De

Initial De and Kw of EBS is smaller than conservatively 
assumed values in TRU-1 report(2000).
Kw increases with the alteration of montmorillonite. In 
some cases, Kw exceed the “conservative value” of TRU-1 
report, in which only ion-exchange of Na to Ca was 
selected as the alteration mechanism.
De maintains initial value. In some cased, it decreases 
with the precipitation of CSH.
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Flux from EBS decreases 
by considering realistic conditions

As derivation of De of mortar/cement from De of intact matrix 
is justified, nuclide flux from EBS decreased.
As it was showed that, alteration of EBS with FAC can be 
predicted by model, smaller flux can be expected. 
If kinetic dissolution model is confirmed, much smaller flux in 
long-term will be able to expected.
If EBS is constructed near the ocean, extreme growth of flux
might occur. (If local equilibrium is assumed)
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Conclusion

Reflecting the results of the experiment, long-
term model analysis was performed. 
The modification of conservative assumptions 
to the realistic ones made it possible to expect 
higher performance of the EBS for longer time. 
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Technical issues to be solved

Properness of the selection of minerals isn’t 
clear yet. 
Though chemical reactions in batch experiment 
could be understood by model calculation, 
there are differences in column experiment 
where mass transport also takes important role.
In most experiments, cracks of mortar were 
clogged, but they aren’t fully reproduced by 
model calculations.
Much efforts are being paid now, to construct  
kinetic dissolution model of montmorillonite.

More detailed information of the geochemical 
reactions and mass transport will be shown by 
the results of the long-term alteration test of 
bentonite/mortar.


