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Abstract: We find that theoretical calculation using Hansen’s model is significantly different from 
experimental results of weak source induced busts by Wimett et al on Godiva-II. Based on 
solution of the probability of n neutrons at time t, the expected length of finite fission chain is 
evaluated and the multiplication of delayed neutron precursors is studied, which indicate that the 
number of delayed neutrons may vary several times during the waiting time. With consideration of 
the multiplication of delayed neutron precursors, an improved theoretical model of probability 
distributions of burst wait-time is presented, which consists well with experimental results of 
Godiva-II  
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I. INTRODUCTION 

In slightly supercritical system in presence of weak source, the stochastic behavior 

of neutrons during multiplication has attracted much attention for many years.  

The stochastic behavior of neutrons had been shown by Wimett et al. on Godiva-II 

in 1960[1], and was also confirmed on CFBR-II by the Institute of Nuclear Physics 

and Chemistry, China Academy of Engineering Physics. 

Hansen studied this phenomena and developed a theoretical model which has been 

used by many other researchers since then. However, we note that when the average 

waiting time in presence of weak source and the probability distributions in time of 

burst occurrence are calculated using Hansen’s method, the consistency between 

calculations and experimental results is not good.   

This stochastic behavior was still not well understood till 2007, as pointed by 

Greenman, LLNL believed it is necessary to develop new code in order to simulate 

this behavior of neutrons in experiments. 

We studied Hansen’s model and found that the contributions of finite fission chains 

and delayed neutrons are ignored in his model, although these contributions have been 

discussed in his paper. Furthermore, the source strength during the waiting time and 

the probability of a source neutron sponsoring a persistent fission chain are also 

considered as constants in Hansen’s model. In this paper, we improve Hansen’s model 

by solving the expectation of finite fission chain and the multiplication of delayed 

neutron precursors due to finite fission chain. The calculated results are in good 

agreement with the experimental data.  

II. PROBABILITY EQUILIBRIUM EQUATION ( )ttPn ,0  AND ITS SOLUTION 

 We discuss the probability of a source neutron sponsoring a persistent fission 

chain. The probability equilibrium equation and its solution are given. 
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  We consider a simple point reactor in which all neutrons behave identically, each 

neutron has the probability p of producing fission, each fission has the probability 

p(ν) of emitting ν neutrons. Let W be the probability of a source neutron 

sponsoring a persistent fission chain. Denote ( )ttPn ,0 , the probability of a source 

neutron at time t0 sponsoring n neutrons at time t, which satisfies the equation 
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Here τ is the mean lifetime of a neutron. The initial condition of ( )ttPn ,0  is     
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Where nlδ  is the Kronecker delta. Obviously ( )ttPn ,0  satisfies  

         ( )∑
∞

=

=
0

0 1,
n

n ttP .                             (3) 

By introduction of parameter z, the generation function of ( )ttPn ,0  can be defined as  
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where 
k

k 1−
=ρ is the prompt reactivity. Thus, as we can see the probability W of a 

source neutron sponsoring a persistent fission chain is related to the prompt reactivity 

ρ and the mean lifetime τ of a neutron. And (8) can be rewrited as      

                 
ρ
ν

η
2

2Γ=
( )( )10 −−tt

e
α

( )1
1

−= ε
W

.                      (9) 

When η is large enough, n in ) can be considered as continuous, thus we have 

                ( ) η

ηη
ε

n

n ettP
−

+
=

)1(
,0 .                              (10) 

III. THE PROBABILITY OF EXTINCTION AND SPONSORING A PERSISTENT 

FISSION CHAIN AT TIME T 

Deduction of the probability of extinction and sponsoring a persistent fission chain 

at time t is presented. 

We assume the first neutron is introduced into the system at 00 =t . And the 

probability of n neutrons sponsoring persistent fission chain is nWe−−1 , where nWe−  

is the probability of n neutrons not sponsoring persistent fission chain. Thus, 

( ) dtetPn nW

nf )1( −−Σν  is the contribution of the probability of n neutrons in the 

system to sponsoring a persistent fission chain in dt, whereas ( ) dtetPn nW

nf

−Σν  is the 

contribution of the probability of n neutrons in the system to sponsoring a 

non-persistent fission chain in dt.  

Define ( )tP0  as the extinction probability at time t , and assume there is already 

one neutron in the system at t = 0, thus ( ) 000 =P  is the initial condition. And we also 

have 
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The neutrons sponsoring persistent fission chain will not die out, that is 

    ( )( ) ( )( ) WePdnetP
WnW

n =−=− −−
∞

∫ 101 1

0

.                           (12) 

The extinction probability at time t equals the probability of sponsoring 
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non-persistent fission chain at the initial time minus these at time t, that is, 
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  Substitution of (15) and (16) into (12) yields 
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which is satisfied under the condition ( )1−teW α <<1, or ( )1−teα >>W . 

From the experimental data of Godiva-II, 310−≈W , and the above condition requires 

tα >> 310−  or t >>
α

310−

.Apparently, t < 
α

310−

 is a very short amount of time, which 

is also the requirement in the deduction of the continuous form of ( )ttPn ,0 , where 
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η
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From (15) and (16), we obtain the left side of eq. (13) 
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respectively. We note that teα >>W  is satisfied for Godiva-II，thus (18) equals (19) 

approximately. Therefore, eqn. (13) is verified.       

IV. EXPECTATION OF FINITE FISSION CHAIN LENGTH fn  

We evaluate the expectation of the finite fission chain and give the caculated， 

Let us consider a point reactor and ignore all delayed neutrons, assume one neutron 

is introduced into the system at the starting point which sponsors a non-persistent 

fission chain. Then the average number of fissions fn is defined as the expectation 

of the finite fission chain length . As defined in section III, nWe−  is the probability of 

n neutrons not sponsoring persistent fission chain, and ( ) dtetPn nW

nf

−Σν  is the 

contribution of the probability of n neutrons in the system sponsoring a non-persistent 

fission chain in dt, we have 
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=Tfn 。which means the relaxation time of forming a finite fission chain 

is 
α
3

=T . The physical meaning of eq.(52) is manifest, for ρ <<1, fn is inversely 

proportion to ρν .  

Now we can evaluate the expectation of the fission numbers of finite fission chain. 

Given βeff=0.0069, ν =2.59, Γ2=0.795, ρ ($)=0.05 for Godiva-Ⅱ，the expectation is 

1119≈fn 。which is well consistent with 1200
f

n ≈  from Spriggs [3]. 

V DELAYED NEUTFRON PRECURSORS EQUATION AND ITS SOLUTION 

The multiplication of delayed neutron precursors is studied, which indicates that the 

number of delayed neutrons may vary several times during the waiting time. 

Under the point reactor model, the differential equations for the slow development 

of the delayed neutron precursor due to the finite fission chain are considered as; 
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Among them, ( )tCi  is fraction of the delayed neutrons precursors , the i group ; iλ  

is the constant disntegration of the i group of delayed neutrons precursors fraction, 

( )tn f is the mathematical expectation of the fission times of a source neutron and 

its progeny， 0S is the Spontaneous fission source and initial delayed neutron source 

In dsf SSS +=0 ， sfS  is the spontaneous fission source for the device， dS  is the 

Delayed neutron source。If  there is the delayed neutron  in the initial system dS ，

The spontaneous fission neutron can be regarded as the initial source 0S . 

According to the formula (23), it is known that the ( )tn f slow variation of the 
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neutron with time is related to the expectation of the finite length fission chain. When 
the formula (1) is made of a single group of delayed neutrons, the neutron source in 
the system can be expressed as: 

 

( ) ( )tCStS ξ+= 0                           (24) 

Among them, the mathematical expectation of the concentration of the precursor is 
the average decay constant of the single group. 

( )tC  will meet the following differential equation; 
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Handle (26) into equation (25) obtained 
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If the initial system does not slow the neutrons, so there are initial conditions 

( ) 00 ==tC                               (28) 

Solving equation (27), and obtained by the initial condition (28) 

( ) ( ) 01 SetC t

P

eff ξ

ξρ
β −−=                        (29) 

Handle (29) into equation (24) obtained 
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According to the formula (30) and the experimental parameters, the proliferation of 
delayed neutrons in the waiting time of the pulse is calculated. 

for example: When the 0=t ， ( ) 00 SS = 。 

The results of delayed neutron multiplication with the proliferation of Godiva-II 
were included in Table 1 during the waiting period. 

 
 

Table 1 the proliferation data of delayed neutron in Godiva-II reactor 

t(sec) 0 1 2 3 4 5 6 7 8 

S(t)(1/sec) 90 690 1090 1357 1653 1732 1732 1784 1820 

 

When the waiting time ∞→t : 
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The experimental parameter of Godiva-II given by the Wimett 

0069.0=effβ , 05.0=Pρ , sec/900 ≈= sfSS  the source of the source of strength.  

According to the experimental parameters, and formula(68), the maximum can be 
calculated to increase the system's delayed neutrons to more than 20 times. 

 

VI. An Improved Model  

The Hansen’s model is improved by introducing the finite fission chain and 

delayed neutron precursors. An improved theoretical model of probability 

distributions of burst wait-time is presented, which consists well with experimental 

results of Godiva-II  

The probability distribution model of waiting time probability distribution of pulsed 
reactor weak source is given under the assumption of step approximation of Hansen. 

     11111 )exp()( WSdtWStdttP st −=                            (32) 

After the previous discussion, we think that the delayed neutrons will be in the 

system during the waiting period. This will causeW  to change, that is ( )tρρ =  、
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Therefore, the Hansen model (31) can be rewritten as; 
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Obviously, formula (33) is difficult to obtain analytical solution directly. In order to 
solve, this order, then formula (33) can be expressed as 
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The implication is that the spontaneous fission neutron and delayed neutron is 
equivalent to neutron source. The type (35) into equation (34) 
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Using the formula (37) and the experimental parameters, the fitting curve and the 
experimental results are satisfactory, as shown in Figure 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

 

 

 

    Fig. probability distribution curve of waiting time for Godiva reactor with 94 times 

 

VII  CONCLUSION  

In the study of fast neutron pulsed reactor of weak source induced busts 

experiment, we found the limitations of Hansen’s model and method of the Wimett, 

Hansen’s model is improved by introducing the finite fission chain and delayed 

neutron precursors, the model can be a very good description of the experimental 

results. The model is also applicable to other similar experiments of pulsed reactor. 
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